Một trong những rào cản trong vấn đề khai thác nguồn năng lượng mặt trời (NLMT) là giá thành các tấm quang điện khá cao. Do vậy, phải tìm cách nâng hiệu suất của chúng. Vào những ngày có nắng, mặt trời di chuyển một góc khoảng 1800 so với điểm cố định trên mặt đất. Rõ ràng, một tấm quang điện đặt cố định sẽ không tận dụng hết được nguồn năng lượng từ bức xạ mặt trời, điều này gọi là hao phí quang điện. Với các ưu điểm vượt trội và khả năng khai thác dễ dàng, NLMT đã và đang sẽ là nguồn năng lượng được chú trọng phát triển và có quy mô lớn nhất trong những năm sắp tới. Hệ thống nâng cao hiệu suất tấm quang điện là hệ thống tự điều chỉnh hướng tấm quang điện sao cho tia bức xạ chiếu vuông góc lên bề mặt tấm trong suốt thời gian chiếu sáng ban ngày làm tăng đáng kể hiệu suất của tấm quang điện.
• Nghiên cứu giá điện và giải quyết tắc nghẽn truyền tải trong thị trường điện nhằm đảm bảo tính ổn định
• Tính toán hiệu quả kinh tế hệ lưu trữ năng lượng mặt trời
• Tính toán tổn thất công suất hệ thống điện mặt trời áp mái nối lưới
• Kiểm tra lựa chọn thiết bị bảo vệ cho điện mặt trời mái nhà
Đã có nhiều nghiên cứu về điện mặt trời và ảnh hưởng của chúng đến hệ thống điện. Tuy nhiên, việc nghiên cứu về khả năng duy trì phát điện của nhà máy điện mặt trời (NMĐMT) khi sự cố trên lưới điện chưa được quan tâm và nghiên cứu. Vì vậy, bài báo này đề xuất hướng nghiên cứu này với mục đích góp phần vào việc xem xét tác động của nhà máy trước khi đấu nối vào hệ thống điện.
Nguồn năng lượng thiên nhiên đã tồn tại hàng ngàn năm như than đá, dầu mỏ,… mà con người đã biết tận dụng cho đời sống từ nhiều thế kỉ trước cho đến ngày nay đã thải ra khí quyển một lượng chất thải nguy hiểm, những chất này làm cho trái đất ngày càng ấm lên, là nguyên nhân chủ yếu gây ra những biến đổi về khí hậu theo xu hướng xấu, đó làm cho nhân loại đứng trước nguy cơ thiếu hụt năng lượng.
Để giảm thiểu tình trạng này, những nhà khoa học ở những quốc gia phát triển đã tích cực tìm ra những nguồn năng lượng sạch mới để thay thế như: năng lượng gió, NLMT, năng lượng sóng biển,… Trong đó nguồn NLMT được quan tâm nhiều hơn do những ưu việt về tính ổn định, khả năng khai thác dễ dàng, tiềm năng lớn, cho đến nay nhiều hệ thống thu và biến đổi NLMT đã được thiết kế, chế tạo và lắp đặt khắp nơi trên thế giới. Cách thức thông dụng nhất hiện nay là sử dụng các dàn quang điện để trực tiếp chuyển hóa quang năng thành điện năng, một dạng năng lượng có thể lưu trữ, truyền tải và sử dụng phổ biến nhất trong đời sống con người.
Tại Việt Nam, với chính sách khuyến khích NLMT, các dự án PV ngày một phát triển trên nhiều tỉnh thành: Quảng Ngãi, Khánh Hòa, Bình Thuận, Bạc Liêu, Tây Ninh,…
Tính đến năm 2020, tổng công suất lắp đặt năng lượng mặt trời ở Việt Nam đã vượt 16,6 GW, chiếm 24 % tổng công suất lắp đặt của lưới điện quốc gia. Theo dự thảo gần đây của Quy hoạch Năng lượng Việt Nam (PDP) VIII, đến năm 2030 điện mặt trời 18,6 GW và điện gió là 18 GW (30% tổng công suất lắp đặt sẽ được kết nối vào lưới điện.
Theo Quy hoạch điện VII điều chỉnh, Chính phủ chủ trương khuyến khích đẩy nhanh phát triển nguồn điện sử dụng NLMT, bao gồm cả nguồn tập trung lắp đặt trên mặt đất và nguồn phân tán lắp đặt trên mái nhà; đưa tổng công suất nguồn điện mặt trời từ mức không đáng kể từ năm 2016 lên khoảng 850 MW vào năm 2020, khoảng 4.000MW vào năm 2025 và khoảng 12.000 MW vào năm 2030. Tuy nhiên, trong 2 năm gần đây triển khai Quyết định số 11/2017/QĐ-TTg của Thủ tướng Chính phủ, về cơ chế khuyến khích phát triển các dự án điện mặt trời tại Việt Nam, đã tạo ra “cú hích” với hàng loạt dự án đầu tư sắp đi vào hoạt động. Dữ liệu đến hết tháng 9/2018 của Bộ Công Thương cho biết, 121 dự án được phê duyệt bổ sung vào quy hoạch điện quốc gia và cấp tỉnh với tổng công suất phát điện đến 2020 là 6.100 MW và 2030 là 7.200 MW. Trong số này 25 dự án đã ký hợp đồng mua bán điện (PPA) với Tập đoàn Điện lực Việt Nam (EVN) và 70 dự án thẩm định thiết kế cơ sở. Ngoài ra, còn 221 dự án đang xếp hàng chờ phê duyệt, công suất đăng ký hơn 13.000 MW. Như vậy tổng công suất đã bổ sung và đăng ký lên tới gần 26.000MW vượt hơn gấp đôi so với Quy hoạch điện VII điều chỉnh. Đặc biệt trong năm 2019, rất nhiều nhà đầu tư chạy đua với mục tiêu được cấp chứng nhận vận hành thương mại (COD) trước ngày 30/6/2019. Theo kế hoạch có 88 nhà máy điện mặt trời đóng điện trong quý 2/2019. Đến hết tháng 5/2019 đã có 47 dự án điện mặt trời với công suất 2.300 MW được đấu nối vào lưới điện quốc gia. Dự kiến, 41 dự án còn lại sẽ đóng điện trong tháng 6 với tổng công suất 2.500 MW, với tốc độ đóng điện trung bình 10 nhà máy/tuần.
Với nhu cầu điện tăng trưởng khoảng 10%/năm, Việt Nam cần bổ sung khoảng 3.500-4.000 MW công suất nguồn điện mới mỗi năm. Và việc bổ sung nhanh chóng nguồn điện mặt trời là vô cùng cần thiết. Tuy nhiên, NLMT có tính chất không ổn định gây không ít khó khăn trong việc vận hành hệ thống điện để cân đối cung – cầu, đảm bảo an ninh năng lượng quốc gia. Ngoài ra khi NMĐMT tham gia vào hệ thống còn ảnh hưởng đến độ ổn định của hệ thống, thay đổi hệ thống rơle bảo vệ, chất lượng điện năng. Do đó nhà máy điện mặt trời khi nối lưới phải đáp ứng một số yêu cầu như: khả năng điều chỉnh tần số, khả năng điều chỉnh công suất phản kháng và điện áp, thành phần thứ tự nghịch, sóng hài, độ nhấp nháy điện áp, yêu cầu về ngắn mạch và thời gian loại trừ sự cố.
Xuất phát từ các yêu cầu đó, bài báo tập trung vào việc “Nghiên cứu khả năng duy trì phát điện của nhà máy điện mặt trời khi xảy ra sự cố trên lưới điện”.
2. MÔ HÌNH, MÔ PHỎNG VÀ ĐÁNH GIÁ
Trong nội dung mô hình, mô phỏng và đánh giá kết quả, chúng ta xét đến 2 yêu cầu khi đấu nối nguồn phân tán NLMT:
Nghiên cứu đã khảo sát việc kết nối NMĐMT vào lưới điện quốc gia trong điều kiện xác lập (1). Kết quả khảo sát cho thấy việc kết nối làm tăng khả năng mang tải của một số đường dây, tăng điện áp một số nút lân cận nhà máy, nhưng chỉ là mức giá trị tăng nhỏ, không ảnh hưởng đến lưới điện. Việc bổ sung nguồn điện mặt trời vào lưới điện cũng góp phần làm giảm thiểu tổn thất điện năng của lưới điện khu vực.
Tuy vậy, cần khảo sát thêm trong điều kiện quá độ (2) về khả năng lướt qua sự cố (FRT= Fault-Ride Through) của NMĐMT mà Quy định đấu nối yêu cầu. Dùng phần mềm PSCAD để khảo sát khả năng này của NMĐMT đang quan tâm, đặc biệt trong giai đoạn 2, khi công suất của nhà máy được mở rộng, lên đến 42 MW.
2.1 Mô Phỏng và đánh giá hệ thống điện ở Quãng Ngãi với chế độ xác lập và những nguyên nhân gây mất ổn định
Sử dụng phần mềm PSS/E mô phỏng lưới điện phân phối huyện Đức Phổ có xét đến sự tham gia của Nhà máy điện mặt trời Đầm An Khê công suất phát điện 8,5MW với chế độ phụ tải max, khả năng mang tải của các đường dây trước và sau khi đấu nối nhà máy vào lưới điện được thể hiện trên hình 1. Dưới đây là tình trạng mang tải của một số tuyến đường dây gần nhà máy có ảnh hưởng rõ rệt nhất khi nhà máy có phát điện.
Từ kết quả sau khi mô phỏng bằng phần mềm PSS/E, nhận thấy tình trạng mang tải của các đường dây khi đấu nối Nhà máy điện mặt trời Đầm An Khê vào lưới điện phân phối tại điểm đấu nối thanh cái 22kV của TBA 22/0,4kV Di tích KC Sa Huỳnh khiến dòng điện mang tải một số đường dây trung áp lân cận như: DZ Phổ Thạnh 9- Phổ Thạnh 3, DZ Phổ Thạnh 3-TDC Đồng Muối, DZ Phổ Thạnh 16-Phổ Thạnh 7 và DZ Phổ Thạnh 7- DT_KC Sa Huỳnh có tăng lên nhưng không đáng kể nên không ảnh hưởng đến khả năng mang tải của các tuyến đường dây (tất cả các đường dây đều mang tải dưới 60%), đảm bảo lưới điện khu vực vẫn vận hành bình thường.
Bên cạnh đó, việc bổ sung thêm 1 nguồn cấp điện cho lưới phân phối Đức Phổ đã làm cho một số đường dây mang tải trục chính giảm được dòng mang tải như: DZ TC22 Đức Phổ – CVD. An Khê, DZ CVD. An Khê – Phổ Thạnh 9, DZ Phổ Thạnh 17 – XD Hãng 473 và DZ XD Hãng 473 – TC22 Đức Phổ.
Chi tiết so sánh khả năng mang tải của một số tuyến đường dây này được thể hiện trong bảng sau:
Bảng 2. So sánh khả năng mang tải của một số đường dây trung áp trong trường hợp có và không có nhà máy.
Đánh giá ảnh hưởng của nhà máy đến tổn thất điện áp
Từ kết quả mô phỏng ảnh hưởng đến chất lượng điện áp các nút trên lưới trước và sau khi đấu Nhà máy điện mặt trời Đầm An Khê vào lưới điện khu vực với chế độ phụ tải max. Nhận thấy sau khi đấu nối, việc bổ sung thêm nguồn cấp điện cho lưới phân phối làm giảm tổn thất điện áp trên tất cả các nút của lưới phân phối huyện Đức Phổ. Kết quả so sánh độ chênh lệch điện áp một số nút cụ thể như sau:
Kết quả cho thấy trường này cho thấy sự biến động về điện áp rõ rệt về dòng điện trước và sau khi có nhà máy thì vẫn ổn định trong điều kiện xác lập theo tiểu chuẩn của Việt Nam.
2.2 Mô Phỏng và đánh giá ảnh hưởng của nhà máy điện mặt trời Fujiwara đến lưới điện tỉnh Bình Định, sử dụng phần mềm PSCAD
Tại thời điểm ngắn mạch, dòng điện pha ngắn mạch tăng cao nhất so với 2 pha còn lại; điện áp pha bị ngắn mạch bằng 0, điện áp 2 pha còn lại giảm xuống. Khi điện áp dây giảm xuống dưới 0,85 pu bộ duy trì phát điện khi phát hiện điện áp thấp trên lưới LVRT sẽ làm việc và điều khiển phát công suất phản kháng vào lưới để hỗ trợ lưới duy trì và nâng điện áp lưới trong thời gian xảy ra ngắn mạch. Tại thời điểm 150 ms khi lưới hết sự cố ngắn mạch, điện áp lưới được phục hồi thì nhà máy vẫn phát điện trở lại ổn định đảm bảo yêu cầu về điện áp, công suất như trước khi xảy ra sự cố theo Thông tư 39 /2015/TT-BCT Việt Nam.
Kết quả mô phỏng ở chế độ quá độ tại Nhà máy điện Fujiwara tỉnh Bình Định đáp ứng yêu cầu kỹ thuật về việc đấu nối NMĐNLMT vào lưới điện theo tiêu chuẩn Việt Nam được qui định tại Thông tư 39.
3. KẾT LUẬN
Qua kết quả chạy mô phỏng ta đánh giá được Nhà máy điện mặt trời Fujiwara Bình Định đảm bảo yêu cầu duy trì được khả năng phát điện trong khoảng thời gian 150ms khi có sự cố ngắn mạch nặng nề nhất là tại thanh cái nhà máy và đang phát ở công suất 42MW. Khi sự cố được giải trừ trong khoảng thời gian này nhà máy tiếp tục phát công suất góp phần hỗ trợ lưới đi vào chế độ ổn định.
TÀI LIỆU THAM KHẢO
Ngô Đăng Lưu (Công ty Anh Minh Global)
Nguyễn Đình Long (Trường Đại học Đồng Nai)
Nguyễn Hùng (Trường Đại học Công nghệ Thành phố Hồ Chí Minh)