acecook

Nâng cao phân tích kiểm soát lô và quy trình sản xuất bằng DataOps công nghiệp

Số hóa công nghiệp
09/07/2024 17:50
Dữ liệu công nghiệp (DataOps công nghiệp) giúp các nhà sản xuất thấu hiểu quy trình sản xuất một cách thông minh hơn, từ đó tối ưu hóa các thông số và cải thiện kết quả sản xuất theo lô.
aa

Dữ liệu công nghiệp (DataOps công nghiệp) giúp các nhà sản xuất thấu hiểu quy trình sản xuất một cách thông minh hơn, từ đó tối ưu hóa các thông số và cải thiện kết quả sản xuất theo lô.

Hệ thống tự động điều khiển các quá trình công nghệ trong doanh nghiệp: ưu điểm và nhược điểm

nang cao phan tich kiem soat lo va quy trinh san xuat bang dataops cong nghiep
Bằng cách tận dụng dữ liệu để tối ưu hóa các quy trình, các nhà sản xuất có thể giảm chi phí, giảm thiểu lãng phí và cuối cùng nâng cao lợi nhuận.

Trong ngành sản xuất quy trình, phân tích kiểm soát lô/quy trình là một công cụ cực kỳ hữu ích, giúp cải thiện hiệu quả, năng suất, chất lượng và khả năng cạnh tranh của doanh nghiệp.

Bằng cách tận dụng dữ liệu để tối ưu hóa quy trình, các nhà sản xuất có thể giảm chi phí, giảm thiểu lãng phí và tăng lợi nhuận. Tuy nhiên, để tối ưu hóa hoàn toàn việc phân tích này, cần phải có dữ liệu chính xác, chất lượng và đầy đủ. Giống như câu nói “có bột mới gột nên hồ”, chất lượng của kết quả phân tích phụ thuộc vào chất lượng của dữ liệu đầu vào. Do đó, một chiến lược phân tích hiệu quả đòi hỏi phải kết nối và tích hợp nhiều nguồn dữ liệu khác nhau, đảm bảo việc thu thập, xử lý và sử dụng dữ liệu một cách chính xác.

Sự xuất hiện của DataOps công nghiệp nhằm mục đích phá vỡ các rào cản, giúp dữ liệu công nghiệp trở nên dễ tiếp cận và sử dụng hơn, từ đó thúc đẩy cải tiến hoạt động sản xuất.

Những khó khăn hiện tại

Các nhà sản xuất quy trình chưa có chiến lược phân tích kiểm soát lô/quy trình bài bản thường gặp phải nhiều thách thức. Để hiểu rõ hơn về cách DataOps công nghiệp có thể giúp tận dụng tối đa giá trị của dữ liệu, chúng ta cần hiểu rõ những thách thức này, đặc biệt là những thách thức liên quan đến các chỉ số hiệu suất chính (KPI). Dưới đây là một số chỉ số quan trọng trong phân tích hiệu suất lô:

  • Chất lượng sản phẩm: Sự biến động về chất lượng sản phẩm là một vấn đề phổ biến do thiếu thông tin chi tiết về điều kiện quy trình. Dữ liệu hạn chế và rời rạc khiến việc phát hiện và điều chỉnh các sai lệch về chất lượng trở nên khó khăn. Do đó, không thể xác định được “Lô Chuẩn” (Golden Batch) – một lô sản phẩm lý tưởng để làm tiêu chuẩn so sánh, hay kiểm soát giới hạn thống kê trong quá trình sản xuất. Việc không có thông tin kịp thời có thể dẫn đến việc phải chỉnh sửa quy trình muộn, gây tổn thất lô hàng và chi phí phế liệu có thể lên tới hàng trăm nghìn đến hàng triệu đô la mỗi năm.
  • Tận dụng tài sản: Việc không thể tăng năng suất và rút ngắn thời gian sản xuất do thiếu phân tích về hiệu suất lô cũng là một thách thức lớn. Việc không thể so sánh hiệu suất giữa các nhà máy để xác định và chia sẻ kinh nghiệm tốt nhất đã cản trở sự phát triển, khiến việc phân tích lô phải thực hiện thủ công, tốn nhiều thời gian và công sức.
  • Chi phí sản xuất: Thách thức thứ ba là thiếu thông tin chi tiết để phân tích mức tiêu thụ nguyên liệu thô và năng lượng (nước, khí, điện,…) theo từng lô sản phẩm. Điều này dẫn đến việc không thể phát hiện và sửa chữa các sai lệch, gây ra sự không đồng đều giữa các lô sản phẩm. Nguyên liệu hoặc sản phẩm không đạt tiêu chuẩn phải được xử lý lại hoặc bổ sung thêm nguyên liệu, làm giảm hiệu suất sử dụng tài sản và tăng chi phí sản xuất. Chi phí ước tính cho việc làm lại, nguyên liệu thô dư thừa và năng lượng có thể lên tới khoảng 1 triệu đô la.

Giá trị của DataOps công nghiệp

Việc áp dụng DataOps trong ngành công nghiệp sản xuất quy trình mang lại nhiều lợi ích to lớn. Đầu tiên, DataOps giúp tiêu chuẩn hóa, tập trung và làm rõ ngữ cảnh của dữ liệu phức tạp, từ đó giải quyết các khó khăn trong việc tổ chức và kết nối dữ liệu. Nhờ có một nguồn dữ liệu đáng tin cậy duy nhất và các quy trình tự động, các nhà sản xuất có thể dễ dàng khám phá, hiểu và phân tích dữ liệu một cách hiệu quả.

Bên cạnh đó, DataOps còn giúp khai thác tối đa giá trị của dữ liệu hiện có từ các hệ thống công nghệ thông tin (IT) và công nghệ vận hành (OT). Dữ liệu này được đưa vào một nền tảng sản xuất chung, giúp tăng tốc quá trình phát triển và mở rộng các ứng dụng như phân tích hiệu suất lô, quản lý năng lượng và trí tuệ tài sản. Điều này giúp giải quyết những khó khăn do dữ liệu bị phân tán và thiếu đồng bộ, đồng thời giảm thiểu sự phụ thuộc vào các quy trình thủ công.

Đặc biệt, trong việc phân tích hiệu suất lô, DataOps hỗ trợ kiểm soát sự biến đổi của quy trình sản xuất thông qua mô hình Golden Batch.

Mô hình dưới đây thiết lập các tiêu chuẩn cơ bản cho các lô sản phẩm và quy trình thường xuyên, giúp phát hiện và định lượng bất kỳ sai lệch nào so với tiêu chuẩn đã đặt ra. Từ đó, các nhà sản xuất có thể phân tích nguyên nhân gốc rễ và đưa ra các biện pháp khắc phục kịp thời.

nang cao phan tich kiem soat lo va quy trinh san xuat bang dataops cong nghiep
Phân tích Hiệu suất Lô sản xuất trong Khuôn khổ Golden Batch

Đây chỉ là một minh họa cho thấy DataOps công nghiệp có thể được tích hợp như thế nào để nâng cao khả năng phân tích kiểm soát lô/quy trình và giải quyết các vấn đề thực tế trong một dây chuyền sản xuất đơn lẻ. Do DataOps công nghiệp kết nối ở cấp độ doanh nghiệp, quy trình này có thể dễ dàng nhân rộng trên toàn tổ chức, chẳng hạn thông qua nền tảng Phần mềm dưới dạng Dịch vụ (SaaS) trên đám mây, bao gồm nhiều đơn vị thuê và địa điểm sản xuất khác nhau. Điều này giúp cải thiện hiệu suất hoạt động và thúc đẩy các yếu tố như:

  • Theo dõi KPI đa cấp và so sánh với các KPI Golden Batch.
  • Giám sát xu hướng KPI theo thời gian thông qua nhiều loại biểu đồ hiển thị.
  • So sánh hiệu suất của nhiều lô sản xuất cùng một lúc.
  • Phân tích nguyên nhân gốc rễ cho các lô không tuân theo hồ sơ Golden Batch.
  • Phân tích xu hướng KPI và dự báo.

Khai thác Golden Batch

Để tận dụng tối đa lợi ích của việc mở rộng quy mô sản xuất, chúng ta cần hiểu rõ quy trình để triển khai một chiến lược phân tích hiệu suất lô mạnh mẽ và tối ưu. Chiến lược này dựa trên việc sử dụng DataOps và khai thác Golden Batch – một quy trình sản xuất lý tưởng làm chuẩn mực. Bằng cách thu thập, xử lý, giám sát và phân tích dữ liệu, chúng ta có thể thu được những thông tin chi tiết quý giá, được trình bày trực quan trên một bảng điều khiển tương tác. Điều này giúp các nhà sản xuất liên tục cải tiến quy trình sản xuất của mình theo một quy trình DataOps công nghiệp hợp lý.

Quy trình DataOps công nghiệp logic gồm:

Thu thập dữ liệu

Có ba loại dữ liệu cần được tích hợp: dữ liệu sự kiện, dữ liệu lô và dữ liệu chuỗi thời gian. Các thành phần này khi được tích hợp liền mạch, cung cấp một cái nhìn toàn diện về các quy trình công nghiệp cho phép phân tích và ra quyết định hiệu quả.

Dữ liệu được thu thập từ nhiều nguồn khác nhau thông qua các bộ trích xuất tiêu chuẩn như Microsoft SQL hoặc FT Historian và các tệp định dạng phẳng, bảng tính Excel hoặc các định dạng tương tự. Dữ liệu này sau đó được trích xuất từ các hệ thống nguồn, với dữ liệu dạng bảng được lưu trữ ở định dạng ban đầu dưới dạng một bản sao trong khu vực được gọi là vùng trung gian. Điều này được thực hiện để tránh yêu cầu dữ liệu nhiều lần, cung cấp khả năng thực hiện các thay đổi đối với bản sao để phù hợp với nhu cầu kinh doanh mà không cần thao tác với nguồn và để ngăn ngừa mất dữ liệu.

Việc thiết lập một kho lưu trữ trung tâm tổng hợp các loại dữ liệu khác nhau và hợp nhất các bộ dữ liệu rời rạc cho phép người dùng có được một cái nhìn tổng thể vượt ra ngoài tiện ích riêng lẻ của từng kho lưu trữ. Cách tiếp cận tập trung này cho phép tạo ra các mối tương quan có ý nghĩa, cung cấp một phân tích sâu sắc hơn về các hoạt động công nghiệp. Việc tích hợp và chồng lớp các bộ dữ liệu đa dạng trong một kho lưu trữ trung tâm mở ra những hiểu biết có giá trị để nâng cao hiệu quả hoạt động.

Ngữ cảnh hoá dữ liệu

Thông thường, cách thu thập dữ liệu không phù hợp với cách phân tích dữ liệu. Vì vậy, việc thêm thông tin bối cảnh vào dữ liệu lô, dữ liệu chuỗi thời gian, cảnh báo chất lượng và các sự kiện sẽ giúp dữ liệu trở nên có ý nghĩa và hữu ích hơn.

Bước tiếp theo là liên kết dữ liệu với một mô hình dữ liệu linh hoạt. Đây là bước quan trọng để giải thích dữ liệu chính xác, khám phá thông tin chi tiết và đưa ra quyết định đúng đắn.

Dữ liệu sẽ được chuyển đổi từ dạng này sang dạng khác bằng cách sử dụng các công cụ tích hợp, tùy thuộc vào yêu cầu và công nghệ sử dụng. Ví dụ, có thể cần phải định dạng lại dữ liệu, làm phong phú và thêm bối cảnh bằng cách so sánh với các dữ liệu khác, đồng thời kiểm tra chất lượng dữ liệu để đảm bảo tất cả thông tin cần thiết đều có sẵn.

Khám phá mô hình thời gian để tăng cường giám sát

Việc kết hợp các dữ liệu giúp chúng ta phân tích theo thời gian, ví dụ như so sánh nhiệt độ của các lô sản phẩm khác nhau để tìm ra quy luật và điểm bất thường. Nhờ giám sát liên tục theo thời gian thực, chúng ta có thể đánh giá toàn diện chất lượng quy trình sản xuất.

Bên cạnh đó, việc thêm thông tin ngữ cảnh vào dữ liệu giúp chúng ta dễ dàng tìm ra nguyên nhân gốc rễ của những thay đổi về chất lượng sản phẩm. Bằng cách liên kết các sự kiện và dữ liệu quy trình, chúng ta có thể xác định được chính xác những điều kiện hoặc hoạt động nào đã ảnh hưởng đến chất lượng sản phẩm cuối cùng. Nhờ đó, chúng ta có thể chủ động điều chỉnh và cải tiến để ngăn ngừa các vấn đề về chất lượng tái diễn.

Theo dõi hoạt động thủ công và sử dụng nguyên liệu thô

Trong trường hợp vẫn cần đến các hoạt động thủ công, việc thêm thông tin ngữ cảnh vào dữ liệu giúp chúng ta có thể theo dõi các hoạt động này và việc sử dụng nguyên liệu thô. Ví dụ, việc theo dõi hiệu quả làm việc của nhân viên trong việc tuân thủ các mốc thời gian đã định có thể tác động đáng kể đến thời gian hoàn thành một lô sản xuất. Ngoài ra, kiểm soát chính xác các điểm đặt của nguyên liệu thô đảm bảo việc sử dụng tối ưu, ngăn ngừa lãng phí và góp phần tạo ra chất lượng sản phẩm mong muốn.

Cải tiến liên tục và phân tích kịch bản

Việc tích hợp kho dữ liệu tập trung giúp thúc đẩy các hoạt động cải tiến liên tục. Các kỹ sư quy trình có thể so sánh các lô sản phẩm, phân tích hiệu suất quá khứ và đưa ra các quyết định dựa trên dữ liệu để nâng cao hiệu quả. Cách tiếp cận lặp đi lặp lại này cho phép phân tích các kịch bản khác nhau, giúp người dùng đánh giá tác động của những thay đổi và đổi mới đối với kết quả lô sản xuất.

Quản lý nhà máy có thể xác định mức độ hiệu quả của từng sản phẩm được sản xuất và có thể giúp điều tra thời gian nhàn rỗi của quy trình, từ đó cho phép họ sản xuất nhiều lô hơn với thiết bị quy trình hiện có.

Trình bày thông tin chi tiết một cách trực quan

Sau khi phân tích, dữ liệu sẽ được thể hiện dưới dạng các báo cáo trực quan, dễ hiểu, ví dụ như báo cáo về hiệu suất của nhà máy và từng lô sản xuất. Các báo cáo này thường bao gồm:

  • Chỉ số hiệu suất lô (BPI)
  • Chỉ số hiệu suất chính (KPI)
  • Phân bố BPI/KPI
  • Biểu đồ kiểm soát và xu hướng BPI/KPI
  • Số lượng sự kiện vượt quá quy định (OOS) và vượt quá xu hướng (OOT)
  • Trạng thái OOT/OOS
  • Báo cáo tóm tắt và chi tiết về chất lượng và sản xuất

Từ những thông tin này, các nhà sản xuất có thể so sánh KPI thực tế với KPI của Lô Chuẩn, xác định các yếu tố quan trọng ảnh hưởng đến chất lượng và quy trình sản xuất, từ đó liên tục cải tiến và tối ưu hóa hoạt động.

Tóm lại, DataOps công nghiệp giúp các nhà sản xuất hiểu rõ hơn về quy trình sản xuất, từ đó đưa ra quyết định tối ưu và cải thiện kết quả sản xuất. Không chỉ dừng lại ở một nhà máy, công nghệ này còn có thể áp dụng trên quy mô toàn doanh nghiệp, giúp quản lý và tối ưu hóa quy trình sản xuất tại nhiều địa điểm khác nhau.

Nhờ khả năng kết hợp nhiều nguồn dữ liệu, phân tích theo thời gian và tìm ra nguyên nhân gốc rễ của các vấn đề, các doanh nghiệp có thể đưa ra quyết định sáng suốt, tối ưu hóa hiệu quả hoạt động và liên tục nâng cao chất lượng sản phẩm. Với sự phát triển của công nghệ, việc kết hợp tự động hóa và phân tích ở cấp độ doanh nghiệp hứa hẹn sẽ thay đổi cách thức quản lý quy trình sản xuất trong các ngành công nghiệp. Bằng cách tận dụng dữ liệu để tối ưu hóa quy trình, các nhà sản xuất có thể giảm chi phí, giảm thiểu lãng phí và tăng lợi nhuận.

Hồng Minh (Theo processingmagazine)

mca
Tin bài khác
Quyết liệt chấn chỉnh, bảo đảm ổn định thị trường vàng

Quyết liệt chấn chỉnh, bảo đảm ổn định thị trường vàng

Thị trường vàng trong nước thời gian qua liên tục có những biến động bất thường, gây áp lực lên công tác điều hành chính sách tiền tệ và tiềm ẩn rủi ro đối với ổn định kinh tế vĩ mô. Trước tình hình đó, Chính phủ đã quyết định triển khai các biện pháp mạnh mẽ nhằm lập lại kỷ cương, trong đó trọng tâm là tiến hành thanh tra toàn diện hoạt động kinh doanh vàng. Đây được coi là bước đi quan trọng để bảo đảm thị trường vàng vận hành an toàn, lành mạnh và bền vững.
Thị trường chứng khoán ngày 8/9: VN Index rơi khỏi đường MA20, dòng tiền bắt đáy nhập cuộc mạnh

Thị trường chứng khoán ngày 8/9: VN Index rơi khỏi đường MA20, dòng tiền bắt đáy nhập cuộc mạnh

Lực bán ồ ạt trong phiên 8/9 khiến VN Index mất hơn 2,5% giá trị, lùi về 1.624,53 điểm, mất sâu đường MA20. Dù giảm sâu, thanh khoản thị trường lại tăng mạnh lên trên 53 nghìn tỷ đồng, phản ánh dòng tiền bắt đáy nhập cuộc. Bên cạnh đó, khối ngoại cũng mua ròng gần 1 nghìn tỷ, cho thấy thị trường vẫn còn lực cầu tiềm ẩn.
Tử vi vòng quay công nghệ ngày 9/9/2025: Tuổi Ngọ tiềm ẩn nhiều rủi ro, tuổi Sửu diễn ra ổn định

Tử vi vòng quay công nghệ ngày 9/9/2025: Tuổi Ngọ tiềm ẩn nhiều rủi ro, tuổi Sửu diễn ra ổn định

Những bí ẩn của khoa học đời sống là "món ăn" tinh thần không thể thiếu trong cuộc sống của con người. Tử vi vòng quay công nghệ xem tử vi 12 con giáp ngày 9/9/2025 cho tất cả các tuổi nhằm dự đoán vận hạn về công danh, tiền bạc, tình duyên, sức khỏe...
Biểu đồ kiểm soát quy trình giúp nâng tầm chất lượng sản xuất

Biểu đồ kiểm soát quy trình giúp nâng tầm chất lượng sản xuất

Biểu đồ kiểm soát quy trình là một ứng dụng quan trọng của kiểm soát quy trình bằng thống kê (SPC), được sử dụng trong quản lý quy trình ở nhiều ngành công nghiệp với mục tiêu duy trì tính nhất quán, giảm thiểu biến động và nâng cao chất lượng sản phẩm cũng như dịch vụ. Những biểu đồ này đặc biệt quan trọng trong Six Sigma và các tổ chức sản xuất nhằm đạt được sự ổn định và xuất sắc trong quy trình.
Chuẩn bị tốt nhất để khởi công dự án đường sắt Lào Cai - Hà Nội - Hải Phòng vào 19/12

Chuẩn bị tốt nhất để khởi công dự án đường sắt Lào Cai - Hà Nội - Hải Phòng vào 19/12

Tối 7/9, Thủ tướng Phạm Minh Chính chủ trì cuộc họp rà soát, thúc đẩy triển khai dự án đường sắt tốc độ cao trên trục Bắc-Nam và tuyến đường sắt Lào Cai - Hà Nội - Hải Phòng, giao Bộ Ngoại giao, Bộ Xây dựng rà soát, chuẩn bị tốt nhất để khởi công dự án vào ngày 19/12/2025, theo Công điện số 158/CĐ-TTg của Thủ tướng Chính phủ.
Hòa Phát đạt gần 1 triệu tấn thép thô trong tháng 8, hướng tới mốc 40.000 tấn/ngày

Hòa Phát đạt gần 1 triệu tấn thép thô trong tháng 8, hướng tới mốc 40.000 tấn/ngày

Tháng 8/2025, Tập đoàn Hòa Phát ghi nhận sản lượng thép thô đạt gần 1 triệu tấn, tăng mạnh so với cùng kỳ, nhờ dự án Dung Quất 2 hoàn thành đồng bộ. Doanh thu và lợi nhuận nửa đầu năm cũng bứt phá, cho thấy dấu hiệu phục hồi rõ nét của ngành thép.
Apple chuẩn bị mang đến loạt thay đổi lớn trên iPhone 17

Apple chuẩn bị mang đến loạt thay đổi lớn trên iPhone 17

Chỉ còn ít ngày nữa, Apple sẽ chính thức trình làng dòng iPhone 17 trong sự kiện thường niên diễn ra lúc 0h ngày 10/9 (giờ Việt Nam). Theo nhiều nguồn tin uy tín như Bloomberg, thế hệ iPhone mới sẽ không chỉ tập trung vào hiệu năng mà còn chú trọng mạnh mẽ đến trải nghiệm thực tế của người dùng.
Nhận định phiên giao dịch ngày 8/9: Áp lực bán lan rộng, VN-Index đối mặt rủi ro từ thanh khoản thấp

Nhận định phiên giao dịch ngày 8/9: Áp lực bán lan rộng, VN-Index đối mặt rủi ro từ thanh khoản thấp

Thị trường chứng khoán khép lại tuần đầu tháng 9 trong sắc đỏ khi áp lực bán lan rộng trên diện rộng, đặc biệt ở nhóm ngân hàng và chứng khoán. VN-Index giảm sâu trong bối cảnh thanh khoản tiếp tục ở mức thấp, làm dấy lên lo ngại về khả năng duy trì đà tăng trong ngắn hạn.
Nền tảng khắc phục thách thức lớn trong việc cho phép robot tương tác với con người và môi trường thực

Nền tảng khắc phục thách thức lớn trong việc cho phép robot tương tác với con người và môi trường thực

Nvidia đã công bố một nền tảng máy tính được thiết kế để cung cấp sức mạnh cho robot trong các ứng dụng bao gồm sản xuất, logistics, giao thông vận tải, chăm sóc sức khỏe, nông nghiệp và bán lẻ. Bộ công cụ phát triển và các mô-đun sản xuất Jetson AGX Thor mang lại hiệu suất tính toán AI cao hơn gấp 7,5 lần, hiệu quả năng lượng tốt hơn 3,5 lần và bộ nhớ gấp đôi so với thế hệ tiền nhiệm Jetson Orin, mở khóa khả năng suy luận theo thời gian thực - yếu tố then chốt cho các ứng dụng AI vật lý hiệu suất cao.
Phát động chiến dịch 90 ngày làm giàu, làm sạch cơ sở dữ liệu đất đai

Phát động chiến dịch 90 ngày làm giàu, làm sạch cơ sở dữ liệu đất đai

Bộ Nông nghiệp và Môi trường kết hợp Bộ Công an vừa ban hành Kế hoạch 151/ /KH-BCA-BNN&MT về việc triển khai thực hiện chiến dịch làm giàu, làm sạch cơ sở dữ liệu (CSDL) quốc gia về đất đai trong 90 ngày.
song-gia-tri