acecook

Nâng cao phân tích kiểm soát lô và quy trình sản xuất bằng DataOps công nghiệp

Số hóa công nghiệp
09/07/2024 17:50
Dữ liệu công nghiệp (DataOps công nghiệp) giúp các nhà sản xuất thấu hiểu quy trình sản xuất một cách thông minh hơn, từ đó tối ưu hóa các thông số và cải thiện kết quả sản xuất theo lô.
aa

Dữ liệu công nghiệp (DataOps công nghiệp) giúp các nhà sản xuất thấu hiểu quy trình sản xuất một cách thông minh hơn, từ đó tối ưu hóa các thông số và cải thiện kết quả sản xuất theo lô.

Hệ thống tự động điều khiển các quá trình công nghệ trong doanh nghiệp: ưu điểm và nhược điểm

nang cao phan tich kiem soat lo va quy trinh san xuat bang dataops cong nghiep
Bằng cách tận dụng dữ liệu để tối ưu hóa các quy trình, các nhà sản xuất có thể giảm chi phí, giảm thiểu lãng phí và cuối cùng nâng cao lợi nhuận.

Trong ngành sản xuất quy trình, phân tích kiểm soát lô/quy trình là một công cụ cực kỳ hữu ích, giúp cải thiện hiệu quả, năng suất, chất lượng và khả năng cạnh tranh của doanh nghiệp.

Bằng cách tận dụng dữ liệu để tối ưu hóa quy trình, các nhà sản xuất có thể giảm chi phí, giảm thiểu lãng phí và tăng lợi nhuận. Tuy nhiên, để tối ưu hóa hoàn toàn việc phân tích này, cần phải có dữ liệu chính xác, chất lượng và đầy đủ. Giống như câu nói “có bột mới gột nên hồ”, chất lượng của kết quả phân tích phụ thuộc vào chất lượng của dữ liệu đầu vào. Do đó, một chiến lược phân tích hiệu quả đòi hỏi phải kết nối và tích hợp nhiều nguồn dữ liệu khác nhau, đảm bảo việc thu thập, xử lý và sử dụng dữ liệu một cách chính xác.

Sự xuất hiện của DataOps công nghiệp nhằm mục đích phá vỡ các rào cản, giúp dữ liệu công nghiệp trở nên dễ tiếp cận và sử dụng hơn, từ đó thúc đẩy cải tiến hoạt động sản xuất.

Những khó khăn hiện tại

Các nhà sản xuất quy trình chưa có chiến lược phân tích kiểm soát lô/quy trình bài bản thường gặp phải nhiều thách thức. Để hiểu rõ hơn về cách DataOps công nghiệp có thể giúp tận dụng tối đa giá trị của dữ liệu, chúng ta cần hiểu rõ những thách thức này, đặc biệt là những thách thức liên quan đến các chỉ số hiệu suất chính (KPI). Dưới đây là một số chỉ số quan trọng trong phân tích hiệu suất lô:

  • Chất lượng sản phẩm: Sự biến động về chất lượng sản phẩm là một vấn đề phổ biến do thiếu thông tin chi tiết về điều kiện quy trình. Dữ liệu hạn chế và rời rạc khiến việc phát hiện và điều chỉnh các sai lệch về chất lượng trở nên khó khăn. Do đó, không thể xác định được “Lô Chuẩn” (Golden Batch) – một lô sản phẩm lý tưởng để làm tiêu chuẩn so sánh, hay kiểm soát giới hạn thống kê trong quá trình sản xuất. Việc không có thông tin kịp thời có thể dẫn đến việc phải chỉnh sửa quy trình muộn, gây tổn thất lô hàng và chi phí phế liệu có thể lên tới hàng trăm nghìn đến hàng triệu đô la mỗi năm.
  • Tận dụng tài sản: Việc không thể tăng năng suất và rút ngắn thời gian sản xuất do thiếu phân tích về hiệu suất lô cũng là một thách thức lớn. Việc không thể so sánh hiệu suất giữa các nhà máy để xác định và chia sẻ kinh nghiệm tốt nhất đã cản trở sự phát triển, khiến việc phân tích lô phải thực hiện thủ công, tốn nhiều thời gian và công sức.
  • Chi phí sản xuất: Thách thức thứ ba là thiếu thông tin chi tiết để phân tích mức tiêu thụ nguyên liệu thô và năng lượng (nước, khí, điện,…) theo từng lô sản phẩm. Điều này dẫn đến việc không thể phát hiện và sửa chữa các sai lệch, gây ra sự không đồng đều giữa các lô sản phẩm. Nguyên liệu hoặc sản phẩm không đạt tiêu chuẩn phải được xử lý lại hoặc bổ sung thêm nguyên liệu, làm giảm hiệu suất sử dụng tài sản và tăng chi phí sản xuất. Chi phí ước tính cho việc làm lại, nguyên liệu thô dư thừa và năng lượng có thể lên tới khoảng 1 triệu đô la.

Giá trị của DataOps công nghiệp

Việc áp dụng DataOps trong ngành công nghiệp sản xuất quy trình mang lại nhiều lợi ích to lớn. Đầu tiên, DataOps giúp tiêu chuẩn hóa, tập trung và làm rõ ngữ cảnh của dữ liệu phức tạp, từ đó giải quyết các khó khăn trong việc tổ chức và kết nối dữ liệu. Nhờ có một nguồn dữ liệu đáng tin cậy duy nhất và các quy trình tự động, các nhà sản xuất có thể dễ dàng khám phá, hiểu và phân tích dữ liệu một cách hiệu quả.

Bên cạnh đó, DataOps còn giúp khai thác tối đa giá trị của dữ liệu hiện có từ các hệ thống công nghệ thông tin (IT) và công nghệ vận hành (OT). Dữ liệu này được đưa vào một nền tảng sản xuất chung, giúp tăng tốc quá trình phát triển và mở rộng các ứng dụng như phân tích hiệu suất lô, quản lý năng lượng và trí tuệ tài sản. Điều này giúp giải quyết những khó khăn do dữ liệu bị phân tán và thiếu đồng bộ, đồng thời giảm thiểu sự phụ thuộc vào các quy trình thủ công.

Đặc biệt, trong việc phân tích hiệu suất lô, DataOps hỗ trợ kiểm soát sự biến đổi của quy trình sản xuất thông qua mô hình Golden Batch.

Mô hình dưới đây thiết lập các tiêu chuẩn cơ bản cho các lô sản phẩm và quy trình thường xuyên, giúp phát hiện và định lượng bất kỳ sai lệch nào so với tiêu chuẩn đã đặt ra. Từ đó, các nhà sản xuất có thể phân tích nguyên nhân gốc rễ và đưa ra các biện pháp khắc phục kịp thời.

nang cao phan tich kiem soat lo va quy trinh san xuat bang dataops cong nghiep
Phân tích Hiệu suất Lô sản xuất trong Khuôn khổ Golden Batch

Đây chỉ là một minh họa cho thấy DataOps công nghiệp có thể được tích hợp như thế nào để nâng cao khả năng phân tích kiểm soát lô/quy trình và giải quyết các vấn đề thực tế trong một dây chuyền sản xuất đơn lẻ. Do DataOps công nghiệp kết nối ở cấp độ doanh nghiệp, quy trình này có thể dễ dàng nhân rộng trên toàn tổ chức, chẳng hạn thông qua nền tảng Phần mềm dưới dạng Dịch vụ (SaaS) trên đám mây, bao gồm nhiều đơn vị thuê và địa điểm sản xuất khác nhau. Điều này giúp cải thiện hiệu suất hoạt động và thúc đẩy các yếu tố như:

  • Theo dõi KPI đa cấp và so sánh với các KPI Golden Batch.
  • Giám sát xu hướng KPI theo thời gian thông qua nhiều loại biểu đồ hiển thị.
  • So sánh hiệu suất của nhiều lô sản xuất cùng một lúc.
  • Phân tích nguyên nhân gốc rễ cho các lô không tuân theo hồ sơ Golden Batch.
  • Phân tích xu hướng KPI và dự báo.

Khai thác Golden Batch

Để tận dụng tối đa lợi ích của việc mở rộng quy mô sản xuất, chúng ta cần hiểu rõ quy trình để triển khai một chiến lược phân tích hiệu suất lô mạnh mẽ và tối ưu. Chiến lược này dựa trên việc sử dụng DataOps và khai thác Golden Batch – một quy trình sản xuất lý tưởng làm chuẩn mực. Bằng cách thu thập, xử lý, giám sát và phân tích dữ liệu, chúng ta có thể thu được những thông tin chi tiết quý giá, được trình bày trực quan trên một bảng điều khiển tương tác. Điều này giúp các nhà sản xuất liên tục cải tiến quy trình sản xuất của mình theo một quy trình DataOps công nghiệp hợp lý.

Quy trình DataOps công nghiệp logic gồm:

Thu thập dữ liệu

Có ba loại dữ liệu cần được tích hợp: dữ liệu sự kiện, dữ liệu lô và dữ liệu chuỗi thời gian. Các thành phần này khi được tích hợp liền mạch, cung cấp một cái nhìn toàn diện về các quy trình công nghiệp cho phép phân tích và ra quyết định hiệu quả.

Dữ liệu được thu thập từ nhiều nguồn khác nhau thông qua các bộ trích xuất tiêu chuẩn như Microsoft SQL hoặc FT Historian và các tệp định dạng phẳng, bảng tính Excel hoặc các định dạng tương tự. Dữ liệu này sau đó được trích xuất từ các hệ thống nguồn, với dữ liệu dạng bảng được lưu trữ ở định dạng ban đầu dưới dạng một bản sao trong khu vực được gọi là vùng trung gian. Điều này được thực hiện để tránh yêu cầu dữ liệu nhiều lần, cung cấp khả năng thực hiện các thay đổi đối với bản sao để phù hợp với nhu cầu kinh doanh mà không cần thao tác với nguồn và để ngăn ngừa mất dữ liệu.

Việc thiết lập một kho lưu trữ trung tâm tổng hợp các loại dữ liệu khác nhau và hợp nhất các bộ dữ liệu rời rạc cho phép người dùng có được một cái nhìn tổng thể vượt ra ngoài tiện ích riêng lẻ của từng kho lưu trữ. Cách tiếp cận tập trung này cho phép tạo ra các mối tương quan có ý nghĩa, cung cấp một phân tích sâu sắc hơn về các hoạt động công nghiệp. Việc tích hợp và chồng lớp các bộ dữ liệu đa dạng trong một kho lưu trữ trung tâm mở ra những hiểu biết có giá trị để nâng cao hiệu quả hoạt động.

Ngữ cảnh hoá dữ liệu

Thông thường, cách thu thập dữ liệu không phù hợp với cách phân tích dữ liệu. Vì vậy, việc thêm thông tin bối cảnh vào dữ liệu lô, dữ liệu chuỗi thời gian, cảnh báo chất lượng và các sự kiện sẽ giúp dữ liệu trở nên có ý nghĩa và hữu ích hơn.

Bước tiếp theo là liên kết dữ liệu với một mô hình dữ liệu linh hoạt. Đây là bước quan trọng để giải thích dữ liệu chính xác, khám phá thông tin chi tiết và đưa ra quyết định đúng đắn.

Dữ liệu sẽ được chuyển đổi từ dạng này sang dạng khác bằng cách sử dụng các công cụ tích hợp, tùy thuộc vào yêu cầu và công nghệ sử dụng. Ví dụ, có thể cần phải định dạng lại dữ liệu, làm phong phú và thêm bối cảnh bằng cách so sánh với các dữ liệu khác, đồng thời kiểm tra chất lượng dữ liệu để đảm bảo tất cả thông tin cần thiết đều có sẵn.

Khám phá mô hình thời gian để tăng cường giám sát

Việc kết hợp các dữ liệu giúp chúng ta phân tích theo thời gian, ví dụ như so sánh nhiệt độ của các lô sản phẩm khác nhau để tìm ra quy luật và điểm bất thường. Nhờ giám sát liên tục theo thời gian thực, chúng ta có thể đánh giá toàn diện chất lượng quy trình sản xuất.

Bên cạnh đó, việc thêm thông tin ngữ cảnh vào dữ liệu giúp chúng ta dễ dàng tìm ra nguyên nhân gốc rễ của những thay đổi về chất lượng sản phẩm. Bằng cách liên kết các sự kiện và dữ liệu quy trình, chúng ta có thể xác định được chính xác những điều kiện hoặc hoạt động nào đã ảnh hưởng đến chất lượng sản phẩm cuối cùng. Nhờ đó, chúng ta có thể chủ động điều chỉnh và cải tiến để ngăn ngừa các vấn đề về chất lượng tái diễn.

Theo dõi hoạt động thủ công và sử dụng nguyên liệu thô

Trong trường hợp vẫn cần đến các hoạt động thủ công, việc thêm thông tin ngữ cảnh vào dữ liệu giúp chúng ta có thể theo dõi các hoạt động này và việc sử dụng nguyên liệu thô. Ví dụ, việc theo dõi hiệu quả làm việc của nhân viên trong việc tuân thủ các mốc thời gian đã định có thể tác động đáng kể đến thời gian hoàn thành một lô sản xuất. Ngoài ra, kiểm soát chính xác các điểm đặt của nguyên liệu thô đảm bảo việc sử dụng tối ưu, ngăn ngừa lãng phí và góp phần tạo ra chất lượng sản phẩm mong muốn.

Cải tiến liên tục và phân tích kịch bản

Việc tích hợp kho dữ liệu tập trung giúp thúc đẩy các hoạt động cải tiến liên tục. Các kỹ sư quy trình có thể so sánh các lô sản phẩm, phân tích hiệu suất quá khứ và đưa ra các quyết định dựa trên dữ liệu để nâng cao hiệu quả. Cách tiếp cận lặp đi lặp lại này cho phép phân tích các kịch bản khác nhau, giúp người dùng đánh giá tác động của những thay đổi và đổi mới đối với kết quả lô sản xuất.

Quản lý nhà máy có thể xác định mức độ hiệu quả của từng sản phẩm được sản xuất và có thể giúp điều tra thời gian nhàn rỗi của quy trình, từ đó cho phép họ sản xuất nhiều lô hơn với thiết bị quy trình hiện có.

Trình bày thông tin chi tiết một cách trực quan

Sau khi phân tích, dữ liệu sẽ được thể hiện dưới dạng các báo cáo trực quan, dễ hiểu, ví dụ như báo cáo về hiệu suất của nhà máy và từng lô sản xuất. Các báo cáo này thường bao gồm:

  • Chỉ số hiệu suất lô (BPI)
  • Chỉ số hiệu suất chính (KPI)
  • Phân bố BPI/KPI
  • Biểu đồ kiểm soát và xu hướng BPI/KPI
  • Số lượng sự kiện vượt quá quy định (OOS) và vượt quá xu hướng (OOT)
  • Trạng thái OOT/OOS
  • Báo cáo tóm tắt và chi tiết về chất lượng và sản xuất

Từ những thông tin này, các nhà sản xuất có thể so sánh KPI thực tế với KPI của Lô Chuẩn, xác định các yếu tố quan trọng ảnh hưởng đến chất lượng và quy trình sản xuất, từ đó liên tục cải tiến và tối ưu hóa hoạt động.

Tóm lại, DataOps công nghiệp giúp các nhà sản xuất hiểu rõ hơn về quy trình sản xuất, từ đó đưa ra quyết định tối ưu và cải thiện kết quả sản xuất. Không chỉ dừng lại ở một nhà máy, công nghệ này còn có thể áp dụng trên quy mô toàn doanh nghiệp, giúp quản lý và tối ưu hóa quy trình sản xuất tại nhiều địa điểm khác nhau.

Nhờ khả năng kết hợp nhiều nguồn dữ liệu, phân tích theo thời gian và tìm ra nguyên nhân gốc rễ của các vấn đề, các doanh nghiệp có thể đưa ra quyết định sáng suốt, tối ưu hóa hiệu quả hoạt động và liên tục nâng cao chất lượng sản phẩm. Với sự phát triển của công nghệ, việc kết hợp tự động hóa và phân tích ở cấp độ doanh nghiệp hứa hẹn sẽ thay đổi cách thức quản lý quy trình sản xuất trong các ngành công nghiệp. Bằng cách tận dụng dữ liệu để tối ưu hóa quy trình, các nhà sản xuất có thể giảm chi phí, giảm thiểu lãng phí và tăng lợi nhuận.

Hồng Minh (Theo processingmagazine)

chao-mung-ngay-bao-chi
Tin bài khác
Khi công nghệ cần được kể bằng ngôn ngữ của công chúng

Khi công nghệ cần được kể bằng ngôn ngữ của công chúng

Trong hệ sinh thái đổi mới sáng tạo, truyền thông không chỉ là cánh tay nối dài của những người làm nghiên cứu khoa học hay các doanh nghiệp chế tạo, ứng dụng công nghệ, mà còn là cầu nối thiết yếu giữa công nghệ và đời sống xã hội. Từ nhu cầu lan tỏa tri thức khoa học, giới thiệu sản phẩm, thu hút đầu tư, cho đến việc định hướng tiêu dùng và phản biện chính sách, truyền thông đóng vai trò kết nối quá trình công nghệ được nghiên cứu, sản xuất, ứng dụng và chấp nhận bởi cộng đồng. Bài viết này nhìn lại ba mắt xích quan trọng trong chuỗi giá trị công nghệ: nhà nghiên cứu, doanh nghiệp và người tiêu dùng cuối, để nhận diện rõ hơn những kỳ vọng thực chất mà họ đang đặt vào báo chí và truyền thông hiện nay.
Tử vi vòng quay công nghệ ngày 23/6/2025: Tuổi Sửu nhiều tin vui, tuổi Thân lo âu nhiều chuyện

Tử vi vòng quay công nghệ ngày 23/6/2025: Tuổi Sửu nhiều tin vui, tuổi Thân lo âu nhiều chuyện

Những bí ẩn của khoa học đời sống là "món ăn" tinh thần không thể thiếu trong cuộc sống của con người. Tử vi vòng quay công nghệ xem tử vi 12 con giáp ngày 23/6/2025 cho tất cả các tuổi nhằm dự đoán vận hạn về công danh, tiền bạc, tình duyên, sức khỏe...
"Thép và lửa" - Vẻ đẹp của nghề báo được tôn vinh trong đêm trao giải

"Thép và lửa" - Vẻ đẹp của nghề báo được tôn vinh trong đêm trao giải

Tối 21/6, Hội Nhà báo Việt Nam tổ chức Chương trình nghệ thuật chào mừng Kỷ niệm 100 năm Ngày Báo chí Cách mạng Việt Nam (21/6/1925 - 21/6/2025) và Lễ trao Giải Báo chí Quốc gia lần thứ XIX - Năm 2024 với chủ đề "Thép trong bút - Lửa trong tim". Buổi lễ đã vinh danh 128 tác phẩm báo chí xuất sắc, trong đó có 13 Giải A, 27 Giải B, 49 Giải C và 39 Giải Khuyến khích.
Siêu nhà máy AI - Bước ngoặt công nghệ thông minh ở châu Âu

Siêu nhà máy AI - Bước ngoặt công nghệ thông minh ở châu Âu

Trong một bước đi chiến lược nhằm thúc đẩy cuộc cách mạng sản xuất thông minh tại châu Âu, Nvidia vừa công bố kế hoạch xây dựng nhà máy đám mây AI công nghiệp đầu tiên trên thế giới tại Đức. Dự án này sẽ trang bị tới 10.000 GPU, phục vụ cho các ứng dụng AI trong lĩnh vực sản xuất từ thiết kế, kỹ thuật, mô phỏng đến phát triển robot và bản sao kỹ thuật số (digital twins).
[E-Magazine] Khi robot cầm dao mổ, cách mạng phẫu thuật bắt đầu!

[E-Magazine] Khi robot cầm dao mổ, cách mạng phẫu thuật bắt đầu!

Trong những năm gần đây, ứng dụng trí tuệ nhân tạo (AI) và robot phẫu thuật đã tạo nên bước tiến mạnh mẽ trong lĩnh vực can thiệp ngoại khoa. Năm 2025 chứng kiến hàng loạt nghiên cứu và ứng dụng mới mang tính đột phá, góp phần hiện thực hóa mục tiêu tự động hóa toàn phần trong y học.
Ứng dụng AI trong đô thị thông minh

Ứng dụng AI trong đô thị thông minh

Hiện nay, trong bối cảnh cách mạng công nghiệp 4.0 đang diễn ra mạnh mẽ, việc ứng dụng các công nghệ Trí tuệ nhân tạo (AI) vào quy hoạch, quản lý và phát triển đô thị thông minh không chỉ là xu hướng tất yếu mà còn là yếu tố then chốt tạo nên sự khác biệt, nâng cao chất lượng sống và năng lực cạnh tranh của các đô thị Việt Nam.
Bế mạc Hội báo toàn quốc 2025: Mở ra một trang mới cho nền báo chí cách mạng

Bế mạc Hội báo toàn quốc 2025: Mở ra một trang mới cho nền báo chí cách mạng

Chiều 21/6, Lễ bế mạc Hội báo toàn quốc 2025 đã diễn ra tại Trung tâm Hội nghị Quốc gia, Hà Nội, kết thúc chuỗi sự kiện sôi nổi, nhiều dấu ấn nhân Kỷ niệm 100 năm ngày Báo chí Cách mạng Việt Nam.
Tử vi vòng quay công nghệ ngày 22/6/2025: Tuổi Hợi gặt hái thành công, tuổi Thìn mất phương hướng

Tử vi vòng quay công nghệ ngày 22/6/2025: Tuổi Hợi gặt hái thành công, tuổi Thìn mất phương hướng

Những bí ẩn của khoa học đời sống là "món ăn" tinh thần không thể thiếu trong cuộc sống của con người. Tử vi vòng quay công nghệ xem tử vi 12 con giáp ngày 22/6/2025 cho tất cả các tuổi nhằm dự đoán vận hạn về công danh, tiền bạc, tình duyên, sức khỏe...
Sinh viên lĩnh vực khoa học, công nghệ được đề xuất hỗ trợ 3,6 triệu đồng/tháng

Sinh viên lĩnh vực khoa học, công nghệ được đề xuất hỗ trợ 3,6 triệu đồng/tháng

Ngày 20/6, Bộ GDĐT giới thiệu dự thảo Nghị định chính sách học bổng cho sinh viên theo học các ngành thuộc lĩnh vực khoa học, công nghệ, đối với một số đại học khu vực phía Nam. Theo đó, sinh viên các ngành khoa học cơ bản, kỹ thuật then chốt và công nghệ chiến lược có thể được hỗ trợ 3,63 triệu đồng mỗi tháng, theo đề xuất của Bộ Giáo dục.
Phát biểu của đồng chí Nguyễn Trọng Nghĩa tại Lễ kỷ niệm 100 năm Ngày Báo chí Cách mạng Việt Nam

Phát biểu của đồng chí Nguyễn Trọng Nghĩa tại Lễ kỷ niệm 100 năm Ngày Báo chí Cách mạng Việt Nam

Tạp chí Tự động hoá Ngày nay trân trọng giới thiệu toàn văn phát biểu của đồng chí Nguyễn Trọng Nghĩa, Ủy viên Bộ Chính trị, Bí thư Trung ương Đảng, Trưởng Ban Tuyên giáo và Dân vận Trung ương sáng 21/6, tại Lễ kỷ niệm 100 năm Ngày Báo chí cách mạng Việt Nam (21/6/1925 - 21/6/2025).
siement
Quảng cáo
moxa